ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Japan gets new U for enrichment as global power and fuel plans grow
President Trump is in Japan today, with a visit with new Prime Minister Sanae Takaichi on the agenda. Takaichi, who took office just last week as Japan’s first female prime minister, has already spoken in favor of nuclear energy and of accelerating the restart of Japan’s long-shuttered power reactors, as Reuters and others have reported. Much of the uranium to power those reactors will be enriched at Japan’s lone enrichment facility—part of Japan Nuclear Fuel Ltd.’s Rokkasho fuel complex—which accepted its first delivery of fresh uranium hexafluoride (UF₆) in 11 years earlier this month.
Forest G. Seeley, David J. Crouse
Nuclear Technology | Volume 19 | Number 3 | September 1973 | Pages 140-147
Technical Paper | Chemical Processing | doi.org/10.13182/NT73-A15875
Articles are hosted by Taylor and Francis Online.
A process has been developed for upgrading impure beryllium hydroxide to high-purity beryllium compounds. The crude beryllium hydroxide is dissolved in ammonium bicarbonate solution and extracted with a quaternary ammonium compound in a hydrocarbon diluent. Beryllium is recovered from the solvent extract with concentrated ammonium bicarbonate solution and precipitated as pure Be(OH)2 by heating the solution to volatilize ammonia and carbon dioxide, which are recovered for recycle. Small concentrations of ethylenediaminetetraacetic acid are added to the process solutions to increase separations from contaminants. In a small-scale demonstration of the process starting with a beryllium sulfate solution containing 20 metal contaminants (total of 1.3 × 105-ppm parts of BeO), the BeO product had no detectable metal impurities but metalloid impurities (silicon and boron) of 60-ppm parts of BeO. Later tests showed that the boron content of the product can be reduced by adding a small amount of a boron complexing agent to the process solution.