ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
R. Krieg, T. Malmberg, G. Messemer, T. Stach, E. Stratmanns
Nuclear Technology | Volume 111 | Number 3 | September 1995 | Pages 369-385
Technical Paper | A New Light Water Reactor Safety Concept Special / Nuclear Reactor Safety | doi.org/10.13182/NT95-A15867
Articles are hosted by Taylor and Francis Online.
The most severe consequence of a pressurized water reactor in-vessel steam explosion is a molten fuel slug impact against the head of the reactor pressure vessel that could cause a failure of this head and lead to missiles endangering the reactor containment. An investigation is described that attempts to determine the maximum slug impact that a vessel head is capable of withstanding without failing and, consequently, without impairing the containment safety-related function. Preliminary theoretical assessments are presented that suggest that the head might be able to withstand rather strong impacts and that the shape of the fuel slug will have only a moderate influence on the results, provided the upper internal structures are taken into account. A low sensitivity against the slug shape is an essential prerequisite for a reliable safety proof. However, investigations primarily based on computational models are not sufficient; therefore, an investigation concept is proposed that relies on model experiments in which the geometry is scaled down by factors of 10 and 20, respectively. Theoretical and experimental investigations for liquid-structure impact problems in different scales are discussed to assess the degree of similarity that can be obtained. Finally, model experiments are described in some detail simulating the molten fuel slug impact on the vessel head.