ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Guenther Kessler, Josef Eibl
Nuclear Technology | Volume 111 | Number 3 | September 1995 | Pages 358-368
Technical Paper | A New Light Water Reactor Safety Concept Special / Fission Reactor | doi.org/10.13182/NT95-A15866
Articles are hosted by Taylor and Francis Online.
The risk of present-day light water reactors is dominated by the consequences of core melt accidents followed by a failure of the outer containment. Although such events would have very low frequencies of occurrence, their risk cannot be neglected in the future. Therefore, specifications for mechanical loads and heat loads to the containment are analyzed, and design modifications are proposed, explaining how the containment can withstand the consequences of core melts. As a result, the radiological impact outside of the containment will be drastically decreased. Evacuation of the population outside of the reactor plant will no longer be necessary in the case of a core melt.