ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Walter Tromm, Hans Alsmeyer
Nuclear Technology | Volume 111 | Number 3 | September 1995 | Pages 341-350
Technical Paper | A New Light Water Reactor Safety Concept Special / Nuclear Reactor Safety | doi.org/10.13182/NT95-A15864
Articles are hosted by Taylor and Francis Online.
A core catcher concept is proposed to be integrated into a new pressurized water reactor. The core catcher achieves coolability by spreading and fragmentation of the ex-vessel core melt based on a process of water inlet from the bottom through the melt. By highly effective heat removal that uses evaporating water in direct contact with the fragmented melt, the corium melt would solidify in a short time period, and long-term cooling could be maintained by continuous water evaporation from the flooded porous or fragmented corium bed. The key process for obtaining coolability is the coupling of the three effects: (a) water ingression from below and its evaporation, (b) break up and fragmentation of the corium layer, and (c) heat transfer and solidification of the melt. These mechanisms are investigated in transient medium-scale experiments with thermite melts. The experimental setup represents a section of the proposed core catcher design. A thermite melt is located on the core catcher plate with a passive water supply from the bottom. After generation of the melt, the upper sacrificial layer is eroded until water penetrates into the melt from the bottom through plugs in the supporting plate. Fragmentation and fast solidification of the melt are observed, and long-term heat removal is guaranteed by the coolant water flooding the porous melt. Water inflow is sufficient to safely remove the decay heat in a comparable corium layer. The open porosity is created by the vapor streaming through the melt during the solidification process. Fracture of the solid by thermomechanical stresses is not observed. The experiments in their current stage show the principal feasibility of the proposed cooling concept and are used to prepare large-scale experiments to be performed in the modified BETA facility with sustained heating of the melt.