ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Günter Fieg, Manfred Möschke, Heinrich Werle
Nuclear Technology | Volume 111 | Number 3 | September 1995 | Pages 331-340
Technical Paper | A New Light Water Reactor Safety Concept Special / Nuclear Reactor Safety | doi.org/10.13182/NT95-A15863
Articles are hosted by Taylor and Francis Online.
Special devices (core catchers) might be required in the future to prevent containment failure by basemat erosion after reactor pressure vessel melt-through during a core meltdown accident. Quick freezing of the molten core masses is desirable to reduce the release of radioactivity. A configuration is investigated that consists essentially of a stack of vertically superimposed melt-resistant ceramic pans and that makes use of the vertical extension of small-diameter cavities to provide a sufficiently large spreading area such that the core melt freezes quickly. Tests with ∼100 kg of molten iron and aluminum oxide generated by the thermite reaction give some information on the resistance of various materials against the mixed metal/oxide melt and on the flow and distribution of metallic and oxide melts in such a corecatcher configuration.