ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
S. Goluoglu, H. L. Dodds
Nuclear Technology | Volume 112 | Number 1 | October 1995 | Pages 142-153
Technical Note | Fission Reactor | doi.org/10.13182/NT95-A15859
Articles are hosted by Taylor and Francis Online.
An improved core physics model of the High Flux Isotope Reactor (HFIR) has been developed and evaluated by comparing calculational results with experimental results and also with calculational results obtained with earlier models. Eleven-group and 4-group cross-section libraries that are problem specific, collapsed, and weighted for the HFIR are generated from the 39-group Advanced Neutron Source Reactor cross-section library (ANSL-V general-purpose neutron library), which is based on ENDF/B-V. A diffusion theory-based procedure to analyze the static neutronics of the reactor is developed. Precise cross sections that take fuel loading variations (not considered in previous work) into account are also generated and implemented into an improved R-Z geometry model of the reactor. Point-by-point power densities are calculated using a detailed mesh structure. The results show that the improved model and procedure developed in this work give good agreement with experiments at interior locations with significant deviations at the outer boundary of the reactor core, which is near the control blades. More importantly, the improved model and procedure provide better overall agreement with experimental results than earlier models.