ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Rob D. Radulovich, William E. Vesely, Tunc Aldemir
Nuclear Technology | Volume 112 | Number 1 | October 1995 | Pages 21-41
Technical Paper | Nuclear Reactor Safety | doi.org/10.13182/NT95-A15849
Articles are hosted by Taylor and Francis Online.
In the nuclear industry, aging effects have been traditionally incorporated into probabilistic risk assessment studies by using a constant (static) unavailability (qs) averaged over time. However, recent work shows that because of aging, substantial deviations may occur in time-dependent nuclear plant component unavailability from that predicted by static models well within the plant lifetime. A methodology based on the standard extension of the classic renewal equation when repair is explicitly considered is used to investigate (a) the trends in the effects of aging on time-dependent component unavailability as a function of changing first failure density (FFD) and test parameters and (b) the circumstances for which static approximations may be inadequate to describe these effects. The investigation uses several point- and time-averaged unavailability measures based on time-dependent unavailability, such as before-test unavailability (BTU), average-interval unavailability (AIU) and year-average unavailability (YAU), and is restricted to periodically tested components whose FFDs satisfy the Weibull distribution with aging threshold. The results show that while point measures (e.g., BTU) can substantially differ from static unavailability and while all measures are sensitive to changes in the Weibull shape parameter b, aging threshold time t, and time between tests T, the differences between the time-averaged measures used (e.g., AIU, YAU) and the static unavailability were only found to be relatively significant for one case among more than 100 combinations of b, T, and T that were investigated. The differences are a factor of <2 for all other cases, which is within the uncertainty margin on the data used in the study. The results also show that qs may be an adequate unavailability measure for low values of b (i.e., b<2) and high values of T (i.e., T> 18 months) and may describe the late effects of aging on component unavailability irrespective of band T (i.e., beyond 25 yr of component age for the data under consideration).