ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Donald Bogart
Nuclear Technology | Volume 112 | Number 1 | October 1995 | Pages 9-20
Technical Paper | Fission Reactor | doi.org/10.13182/NT95-A15848
Articles are hosted by Taylor and Francis Online.
Precise calculation of radial distributions of resonance region capture in 238U metal rods and for partially enriched uranium-oxide fuels is important for current and proposed water-moderated power reactors. Advanced core designs for pressurized and boiling water reactors have considered resonance region in-core generation of 239Pu as a means of extending core operating cycles between refuelings. The calculations of detailed spatial resonance captures are beyond the scope of multigroup codes used for practical reactor core design because of the broad resonance energy groups required. Group average resonance capture cross-section parameters employed may conserve total neutron captures, but the spatial detail is washed out. A simplified method is presented that enables direct calculation of resonance region spatial captures in fuel moderator lattices. The validity of the method is confirmed by comparison with published experimental measurements for epicadmium capture with radial distance from the moderator-fuel interface for metal uranium rods from 0.8 to 5.0 cm in diameter. A method is illustrated for spatial resonance capture in partially enriched uranium-oxide fuel rods, and the spatial complexity of 239Pu production during conversion of 238U in the resonance region is discussed. Although the products of the conversion chain can be precisely defined geometrically with operating time, their spatial concentrations cannot be calculated with the accuracy required to determine net production of 239Pu.