ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Donald Bogart
Nuclear Technology | Volume 112 | Number 1 | October 1995 | Pages 9-20
Technical Paper | Fission Reactor | doi.org/10.13182/NT95-A15848
Articles are hosted by Taylor and Francis Online.
Precise calculation of radial distributions of resonance region capture in 238U metal rods and for partially enriched uranium-oxide fuels is important for current and proposed water-moderated power reactors. Advanced core designs for pressurized and boiling water reactors have considered resonance region in-core generation of 239Pu as a means of extending core operating cycles between refuelings. The calculations of detailed spatial resonance captures are beyond the scope of multigroup codes used for practical reactor core design because of the broad resonance energy groups required. Group average resonance capture cross-section parameters employed may conserve total neutron captures, but the spatial detail is washed out. A simplified method is presented that enables direct calculation of resonance region spatial captures in fuel moderator lattices. The validity of the method is confirmed by comparison with published experimental measurements for epicadmium capture with radial distance from the moderator-fuel interface for metal uranium rods from 0.8 to 5.0 cm in diameter. A method is illustrated for spatial resonance capture in partially enriched uranium-oxide fuel rods, and the spatial complexity of 239Pu production during conversion of 238U in the resonance region is discussed. Although the products of the conversion chain can be precisely defined geometrically with operating time, their spatial concentrations cannot be calculated with the accuracy required to determine net production of 239Pu.