ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Tadashi Morii, Yumi Ogawa
Nuclear Technology | Volume 115 | Number 3 | September 1996 | Pages 333-341
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT96-A15843
Articles are hosted by Taylor and Francis Online.
Multiphase flow frequently occurs in a progression of accidents of nuclear reactor severe core damage. The CHAMPAGNE code has been developed to analyze thermohydraulic behavior of multiphase and multicomponent fluid, which requires for its characterization more than one set of velocities, temperatures, masses per unit volume, and so forth at each location in the calculation domain. Calculations of multiphase flow often show physical and numerical instability. The effect of numerical stabilization obtained by the upwind differencing and the fully implicit techniques gives us a convergent solution more easily than other techniques. Several results calculated by the CHAMPAGNE code are explained.