ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Thuy Dung Vu, Dookie Kim, Sung Gook Cho
Nuclear Technology | Volume 182 | Number 1 | April 2013 | Pages 75-83
Technical Paper | Nuclear Plant Operations and Control/Miscellaneous | doi.org/10.13182/NT13-A15828
Articles are hosted by Taylor and Francis Online.
The application of base isolation to nuclear systems has been limited to date for some important reasons, including the deprivation of sufficient data for the long-term operation of such isolation devices and the lack of specific standards. Moreover, it is difficult to provide seismic protection in the vertical direction and to qualify the large-scale isolators up to experimentally large deformations in real dynamic conditions. The effect of aging on isolators is therefore one of the issues to be considered for the safety and reliability of base-isolated nuclear power plants (NPPs). Accounting for the variations of the post-aging parameters of the isolators on the structural performance of the plant, this study proposes a simplified and efficient method to update the analytical model of base-isolated structures based on mean-iterative neural networks (MINNs). A bilinear model with a zero length element was built to represent the characteristics of lead-rubber bearings for their numerical analysis. Analytical model updating by MINNs has been successfully performed, and the observed results are found to be in good agreement with those obtained from experiments. Additionally, it is observed that the stiffening or hardening with time in the shear properties of isolation devices affects the seismic performance of the base-isolated structure. Seismic design over the service life span of NPP structures should take these aging effects of the isolators into account.