ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
J. J. Hancke, G. T. Van Rooyen, J. P. R. De Villiers
Nuclear Technology | Volume 182 | Number 1 | April 2013 | Pages 49-56
Technical Paper | Fission Reactors/Fuel Cycle and Management | doi.org/10.13182/NT13-A15825
Articles are hosted by Taylor and Francis Online.
The crushing strength (load at fracture) of coated particles was measured by compression between soft metal anvils. The method requires no sample preparation and can be used as a quality control method as well as a valuable tool for comparing different coating conditions during the manufacture of TRISO particles. Batches of coated particles manufactured with different coating parameters were prepared and tested. Batches prepared under different conditions exhibited significant differences in crushing strength. Higher argon concentrations in the coater gas mixture resulted in higher crushing strength. Anomalies in the crushing strength of particles are related to defects and possibly residual stresses produced during coating. The influence of annealing at 1950°C on crushing strength was also investigated. The average crushing strength of batches of particles decreased with annealing. Different preparation methods showed a marked difference in the level of deterioration of the particles with annealing. Batches produced with 80% argon gas mixture at 1300°C showed the greatest reduction in crushing strength. An inverse correlation was found between the crushing strength and the uranium that is leached from batches. The particles with the lowest crushing strength would also be more susceptible to mechanical damage during handling and consequently also to leaching of the uranium during leach tests.