ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
B. Pollack, B. J. Lewis, D. Kelly
Nuclear Technology | Volume 182 | Number 1 | April 2013 | Pages 39-48
Technical Paper | Fission Reactors/Fuel Cycle and Management | doi.org/10.13182/NT13-A15824
Articles are hosted by Taylor and Francis Online.
Current limitations of Canadian Deuterium Uranium (CANDU) reactors to reliably locate defective fuel bundles have created interest in new identification techniques. Noble gas tagging, which would involve the addition of specific combinations of Kr and Xe isotopes to the fuel-to-sheath gap during manufacturing, has the potential to offer a means of locating failed-fuel bundles on power, where the released tag could be measured in the primary heat transport system by mass spectrometry. Moreover, the technique could be of particular interest for demonstration irradiations with new fuel bundle designs. This work outlines preliminary considerations on the applicability of noble gas tagging for CANDU reactors. This assessment involved the determination of suitable tag isotopes, the simulation of the impact of the tag on the thermal performance of a fuel element, and the determination of the detection limit of a quadrupole inductively coupled plasma-mass spectrometer instrument for krypton samples with typical aqueous concentrations in the range of 10-12 to 10-9 (molKr/molH2O).