ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Holly R. Trellue, Richard J. Kapernick, D. V. Rao, J. Zhang, Jack D. Galloway
Nuclear Technology | Volume 182 | Number 1 | April 2013 | Pages 26-38
Technical Paper | Fission Reactors/Fuel Cycle and Management | doi.org/10.13182/NT13-A15823
Articles are hosted by Taylor and Francis Online.
This paper describes a new reactor concept: the Salt-cooled Modular Innovative THorium HEavy water-moderated Reactor System (SMITHERS), which addresses the goals of (a) evolving deployment needs, (b) increasing overall fuel burnup, (c) reducing proliferation risk, and (d) providing high-efficiency power generation. The reactor is modular and thus scalable from a few to hundreds of megawatts(thermal). The concept further burns used fuel from light water reactors (LWRs) without aqueous separations, reducing costs and proliferation pathways relative to current reprocessing plants. The additional burning of LWR fuel reduces proliferation risk by reducing global inventories of plutonium from used fuel in a way that does not isolate weapons-useable material and that increases the amount of power produced per ton of mined uranium. Improved fuel utilization through the potential use of thorium provides cost benefits by increasing neutron economy and enabling operation at higher efficiencies. Neutron economy is increased by using the lower neutron energies associated with large quantities of heavy water moderation and/or thorium for innovative reactor control and constant long-term power generation (i.e., sustainability). Finally, the proposed reactor also generates high-temperature coolant discharge in the form of liquid salt without coolant pressurization for external process heat applications such as oil extraction. Salt offers significant improvement over existing coolants such as light water and heavy water, which require pressurization to operate at high temperatures, adding to the cost and complexity of reactor operation. SMITHERS designs discussed in this paper either burned a full core of used fuel, ThO2 with 1.2 wt% PuO2 or other fissile material, or a combination of the two.