ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Andreas Ikonomopoulos, Miltiadis Alamaniotis, Stylianos Chatzidakis, Lefteri H. Tsoukalas
Nuclear Technology | Volume 182 | Number 1 | April 2013 | Pages 1-12
Technical Paper | Fission Reactors | doi.org/10.13182/NT13-A15821
Articles are hosted by Taylor and Francis Online.
A novel machine learning approach for nuclear power plant modeling and state identification is presented together with its test results using data from the Loss-of-Fluid Test experimental facility. The approach exploits Gaussian processes whose principal function is to tackle the temporal problem of forecasting the actual system state in the varying environment of a nuclear reactor facility that undergoes successive overcooling transients. The approach fuses independent Gaussian process expert predictions to provide a single recommendation to the plant operators in a form that is suitable to appear on a decision support system screen. A variety of test cases are developed to explore the validity and relevance of Gaussian processes. The proposed implementation is examined with various predictor variables under different conditions, and the results obtained are in accordance with model expectations.