ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The Frisch-Peierls memorandum: A seminal document of nuclear history
The Manhattan Project is usually considered to have been initiated with Albert Einstein’s letter to President Franklin Roosevelt in October 1939. However, a lesser-known document that was just as impactful on wartime nuclear history was the so-called Frisch-Peierls memorandum. Prepared by two refugee physicists at the University of Birmingham in Britain in early 1940, this manuscript was the first technical description of nuclear weapons and their military, strategic, and ethical implications to reach high-level government officials on either side of the Atlantic. The memorandum triggered the initiation of the British wartime nuclear program, which later merged with the Manhattan Engineer District.
Seung-Hyuk Lee, Hyun-Koon Kim, Sang-Ryeol Park, Soon-Heung Chang
Nuclear Technology | Volume 94 | Number 3 | June 1991 | Pages 407-415
Technical Paper | Heat Transfer and Fluid Flow | doi.org/10.13182/NT91-A15818
Articles are hosted by Taylor and Francis Online.
A statistical core thermal design methodology for generating the limit departure from nucleate boiling ratio (DNBR) is proposed and used in assessing the best-estimate thermal margin in a reactor core. This new methodology adopts a modified Latin hypercube sampling method. In this method, the independencies of the input variables are verified through a correlation coefficient test for statistical treatment of their uncertainties. Next, the DNBR response distribution is determined through a goodness-of-fit test. Finally, a limit DNBR with a one-sided 95% probability and a confidence level of 0.95 is estimated. This methodology is simpler than the conventional statistical method using the response surface and Monte Carlo simulation technique, but it maintains the same level of confidence in the limit DNBR result. This methodology is applied to the Yonggwang Nuclear Units 3 and 4 reactor cores using preliminary design data. From this study, it is deduced that the proposed methodology is useful for design application.