ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
January 2025
Fusion Science and Technology
Latest News
Article considers incorporation of AI into nuclear power plant operations
The potential application of artificial intelligence to the operation of nuclear power plants is explored in an article published in late December in the Washington Examiner. The article, written by energy and environment reporter Callie Patteson, presents the views of a number of experts, including Yavuz Arik, a strategic energy consultant.
Robert E. Einziger, Steven C. Marschman, H. Craig Buchanan
Nuclear Technology | Volume 94 | Number 3 | June 1991 | Pages 383-393
Technical Paper | Radioactive Waste Management | doi.org/10.13182/NT91-A15816
Articles are hosted by Taylor and Francis Online.
Multiple samples of moderate-burnup pressurized water reactor (PWR) and boiling water reactor (BWR) spent fuel are oxidized in controlled atmosphere dry baths at 175, 130, and 110° C. The atmosphere consists of air humidified to a dew point of either—55 or +80°C. These tests are run for up to 18.8 kh. The weight gain data from these tests are analyzed using a mathematical model incorporating the assumption that oxidation occurs by rapid grain-boundary oxygen diffusion, followed by oxidation of the individual fuel grains. The BWR fuel appears to oxidize slightly faster than PWR fuel, and the data suggest a possible increase in oxidation rate in moist air. Reasonable agreement is observed between the oxidation rate constants obtained in these long-term tests and prior short-term thermogravimetric analysis oxidation tests.