ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
Dean Dobranich, Mohamed S. El-Genk
Nuclear Technology | Volume 94 | Number 3 | June 1991 | Pages 372-382
Technical Paper | Nuclear Fuel Cycle | doi.org/10.13182/NT91-A15815
Articles are hosted by Taylor and Francis Online.
Particle-bed reactors have been proposed to provide high-temperature, low-mass power sources for space-based operation. A computer program was prepared to simulate the thermal and mechanical response of a multilayered fuel particle operating in such a reactor. Issues of concern include temperature gradient and interference thermal stresses, along with the plastic and creep deformations associated with the high temperature of operation. The results of the computer simulations indicate that the interference thermal stress is much larger than the temperature gradient stress and the external pressure stress, and that permanent strain formation cannot be avoided for particles operating at temperatures greater than ∼2300 K. The results also reveal some interesting aspects unique to multilayered fuel particle performance. Two such aspects include (a) the interaction between interference thermal stress and high-temperature creep and (b) the effect of power ramp time on the formation of time-dependent plastic strains.