The experimental response of ex-core neutron detectors during both actual and simulated loss-of-coolant accidents (LOCAs) at a pressurized water reactor are analyzed to determine their cause. Various analytical techniques are used to reproduce the ex-core detector response during large-break LOCAs. These techniques include both discrete ordinates transport and point kernel calculations. The experiments analyzed include large-break LOCA experiments at the Loss of Fluid Test Facility and from the Three Mile Island accident. The results show that an adiabatic method is sufficiently accurate to reproduce the detector response. This response can be explained in terms of the combined effects of changes in shielding and multiplication that occur in a core during a LOCA.