ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Ahmad Osgouee, Jin Jiang
Nuclear Technology | Volume 181 | Number 3 | March 2013 | Pages 493-506
Technical Papers | Nuclear Plant Operations and Control | doi.org/10.13182/NT13-A15806
Articles are hosted by Taylor and Francis Online.
In this paper, a new, robust control method based on a multimodel predictive control scheme is developed for steam generator level (SGL) control in nuclear power plants. For a multiramp power increase from low to full power, the proposed controller is capable of keeping the SGL within the admissible range by minimizing the level transients and improving the stability of the control loop. Simulation results and a general framework for systematically studying the SGL are presented to demonstrate the effectiveness of the proposed control method by comparing the performance of the designed controller with that of a properly tuned conventional three-element proportional-integral-derivative (PID) controller. Moreover, it has been demonstrated that the proposed controller is more robust than a conventional PID controller to steam flow disturbances caused by load variations.