ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
MIT’s nuclear professional courses benefit United States—and now Australia too
Some 30 nuclear engineering departments at universities across the United States graduate more than 900 students every year. These young men and women are the present and future of the domestic nuclear industry as it seeks to develop and deploy advanced nuclear energy technologies, grow its footprint on the power grid, and penetrate new markets while continuing to run the existing fleet of reactors reliably and economically.
Florent Heidet, Ehud Greenspan
Nuclear Technology | Volume 181 | Number 3 | March 2013 | Pages 381-407
Technical Papers | Fission Reactors | doi.org/10.13182/NT13-A15800
Articles are hosted by Taylor and Francis Online.
A sodium-cooled fast reactor breed-and-burn (B&B) core and fuel cycle concept are proposed to achieve uranium utilization in the vicinity of 50% without separation of most of the fission products from the actinides. This core is to be fueled with depleted uranium (DU) with the exception of the initial core loading that uses fissile fuel to achieve initial criticality. When the cladding reaches its radiation damage limit, the melt-refining process is used to recondition the fuel, and then the fuel is reloaded into the core. This fuel reconditioning continues until the fuel reaches the neutronically maximum attainable burnup. When a fuel assembly is discharged at its maximum attainable burnup, it is replaced with a fresh DU assembly.The maximum burnup attainable in a large 3000-MW(thermal) B&B core is found to be 57% fissions per initial metal atoms (FIMA). The discharged fuel characteristics such as the inventory of actinides, radiotoxicity, and decay heat are one order of magnitude smaller, per unit of energy generated, than those of a light water reactor operating with the once-through fuel cycle.It is also found that the minimum burnup required for sustaining the B&B mode of operation is 19.4% FIMA. The fuel discharged at this burnup has sufficient excess reactivity for establishing initial criticality in a new large B&B core. The theoretical minimum doubling time for new core spawning is estimated to be [approximately]10 effective full-power years; there is no need for any external fissile material supply beyond that required for the initial "mother" reactor.Successful development and deployment of the B&B core along with fuel reconditioning could possibly provide up to 3000 yr worth of the current global nuclear electricity generation by using the DU stockpiles already accumulated worldwide. However, a number of important feasibility issues are yet to be resolved.