ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Shameem Hasan, Tushar K. Ghosh
Nuclear Technology | Volume 181 | Number 2 | February 2013 | Pages 371-379
Technical Paper | Miscellaneous | doi.org/10.13182/NT13-A15791
Articles are hosted by Taylor and Francis Online.
Uranium oxide (U3O8) nanoparticles were synthesized and coated in situ with porous, mesostructured silica using a modified sol-gel method for use as a catalyst. The catalytic property of coated U3O8 nanoparticles was evaluated by exposing them to an aqueous solution of benzene at 500 mg/l at room temperature. The presence of benzene was not detected by an ultraviolet (UV)-visible (UV-vis) spectrometer after 6 weeks of exposure to coated uranium oxide nanoparticles, indicating the particles' potential as a catalyst. Based on the results of the benzene destruction, it may be suggested that the coated U3O8 nanoparticle-based catalyst has the potential to destroy hydrocarbons, aromatics, and various toxic substances such as perchlorates and 1,4-dioxane from groundwater. However, further experiments are necessary to explore the full potential of the catalyst. Pluronic-123, n-butanol, and 2-propanol were used as surfactant, cosurfactant, and continuous phase, respectively, for the synthesis of the U3O8 nanoparticles, which were formed through nucleation, growth, and subsequent aggregation in the solution phase. The nanoparticles were coated in situ using an aqueous solution of tetraethyl orthosilicate. The coated particles were characterized using transmission electron microscopy, diffuse reflectance infrared Fourier transform spectroscopy, nitrogen physisorption, X-ray diffraction, and diffuse reflectance UV-vis spectroscopy. These measurements revealed that U3O8 particles ranging from 4- to 10-nm were distributed exclusively inside the silica matrix.