ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
MIT’s nuclear professional courses benefit United States—and now Australia too
Some 30 nuclear engineering departments at universities across the United States graduate more than 900 students every year. These young men and women are the present and future of the domestic nuclear industry as it seeks to develop and deploy advanced nuclear energy technologies, grow its footprint on the power grid, and penetrate new markets while continuing to run the existing fleet of reactors reliably and economically.
Robert J. Schott, Charles L. Weaver, Mark A. Prelas, Kyuhak Oh, Jason B. Rothenberger, R. V. Tompson, Denis A. Wisniewski
Nuclear Technology | Volume 181 | Number 2 | February 2013 | Pages 349-353
Technical Paper | Radioisotopes | doi.org/10.13182/NT13-A15789
Articles are hosted by Taylor and Francis Online.
The use of a photon intermediate direct energy conversion (PIDEC) process to develop a proof of concept of a long-lived and efficient nuclear battery powered by a radioactive beta source is discussed. Fundamentally, PIDEC is a means of matching the scale length of the range of radiation to the scale length of the transducer. The device uses a photovoltaic cell and excimer gas-based photon source. In this work, argon was used to produce the excimer photon source (argon excimer at 129 nm) with a pressure range from 7 × 10-3 to 1.4 × 107 Pa (10-6 to 2100 psig). The beta source used in this study was a 90Sr source that has a daughter, 90Y, that then decays to stable 90Zr. Intermediate shielding from lead and an argon gas plenum were used to prevent damage to the photovoltaic cell. This battery demonstrated power variations with gas pressure as expected, and no radiation damage to the photovoltaic cell was observed over a period in excess of 150 h. Such a long exposure period demonstrates the desired tolerance of the device to the direct radiation damage that would otherwise be sustained in normal semiconductor-based energy conversion systems.