ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Alain Marmier, Michael A. Fütterer, Kamil Tucek, Jim C. Kuijper, Jaap Oppe, Biser Petrov, Jérôme Jonnet, Jan Leen Kloosterman, Brian Boer
Nuclear Technology | Volume 181 | Number 2 | February 2013 | Pages 317-330
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT13-A15786
Articles are hosted by Taylor and Francis Online.
As early as the 1970s, attempts have been made to reduce the peak fuel temperature in pebble bed-type high-temperature reactors (HTRs) by means of so-called "wallpaper fuel," in which the fuel is arranged in a spherical shell within a pebble. By raising the particle packing fraction, fuel kernels are condensed to the outer diameter of the fuel zone, leaving a central part of the pebble free of fuel. This modification prevents power generation in this central fuel-free zone and decreases the temperature gradient across the pebble.Besides the reduction of maximum and average particle temperature, the wallpaper concept also enhances neutronic performance through improved neutron economy, resulting in reduced fissile material and/or enrichment needs or providing the potential to achieve higher burnup. To assess such improvements, calculations were performed using the PANTHERMIX code. Among other tests, investigations of fuel cycle under steady-state conditions and loss-of-coolant-accident calculations were conducted. Based on PANTHERMIX steady-state conditions, both particle failure fraction [with the CRYSTAL code (Code foR analYsis of STress in coAted particLes)] and fissile material cost can be determined.It is demonstrated that the wallpaper fuel type positively impacts the fuel cycle, reduces the production of minor actinides (MAs), and improves the safety-relevant parameters of the reactor. A comparison of these characteristics with those of Pebble Bed Modular Reactor (Pty) Limited (PBMR) type of fuel is presented: In comparison with PBMR fuel, the wallpaper design results in an increase of the effective neutron multiplication coefficient (by [approximately]925 pcm). This reactivity increase can lead to a burnup extension (from 96.4 to 101.3 MWd/kg), therefore improving the burnup of HTRs, or to an enrichment reduction (from 9.6 to 9.277 wt%). Both options decrease MA production [as defined in g/TW(thermal)h, between 5.9% and 34.5%], making fuel reprocessing easier and reducing fuel cost (by 4.6% for the high-burnup option and by 3.7% for the low-enrichment option).Safety is also improved, with particle temperature being reduced during steady-state operations (by >55 K for the most exposed particles and by almost 10 K on average). This positively impacts particle failure fraction as calculated by the fuel performance code CRYSTAL, leading to a reduction of up to 85% of the particle failure fraction over its in-core lifetime. This reduces the in-core fission product release.While an increase of the graphite density in the central fuel-free zone increases thermal inertia, initiates a faster reactor shutdown, and delays recriticality, it also disturbs the thermal flux that raises pebble powers in the inner part of the core. This increases the highest kernel temperature during a depressurized loss-of-coolant accident from 1872 K for the PBMR case to 1876, 1917, and 1895 K, respectively, for the three wallpaper designs proposed.The fuel changes suggested in this paper offer more versatility to the HTR concept. The conversion ratio can be decreased, leading to lower MA buildup and fuel reprocessing cost, or raised, leading to lower fuel consumption and fuel cost.