ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Crash Course: The DOE’s Package Performance Demonstration
Inspired by a history of similar testing endeavors and recommended by the National Academy of Sciences and the Blue Ribbon Commission on America’s Nuclear Future, the Department of Energy is planning to conduct physical demonstrations on rail-sized spent nuclear fuel transportation casks. As part of the project, called the Spent Nuclear Fuel Package Performance Demonstration (PPD), the DOE is considering a number of demonstrations based on regulatory tests and realistic transportation scenarios, including collisions, drops, exposure to fire, and immersion in water.
X. Gaus-Liu, A. Miassoedov, J. Foit, T. Cron, F. Kretzschmar, Alexander Palagin, T. Wenz, S. Schmidt-Stiefel
Nuclear Technology | Volume 181 | Number 1 | January 2013 | Pages 216-226
Technical Paper | Special Issue on the 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14) / Fission Reactors; Reactor Safety | doi.org/10.13182/NT13-A15769
Articles are hosted by Taylor and Francis Online.
The LIVE-L4 and LIVE-L5L experiments investigated the thermal-hydraulic behavior of the corium pool in the reactor pressure vessel lower head with the three-dimensional test vessel LIVE. The simulant material is a noneutectic binary mixture of 20% NaNO3-80% KNO3. Transient and steady-state parameters such as melt temperature and heat flux distribution through the vessel wall as well as crust formation characteristics were obtained. The two tests demonstrated that transient events like repeated melt relocation and change of decay power density facilitate crust deformation and change of crust thickness. Massive crust formation in a noneutectic melt pool leads to a change of melt pool composition and a decrease of melt-crust interface temperature. The melt temperature and heat flux at the same pool height and same power density can be roughly compared independent of heating history and initial melt pouring pattern. The dimensionless melt temperature as well as the dimensionless heat flux through the wall during the steady state are independent of power density if the pools have the same height. But, they are dependent on the pool height. For a low pool, the gradients with height of both melt temperature and heat flux through the vessel are larger than those for a high pool.