ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
Kwang Soon Ha, Fan-Bill Cheung, Jinho Song, Rae Joon Park, Sang Baik Kim
Nuclear Technology | Volume 181 | Number 1 | January 2013 | Pages 196-207
Technical Paper | Special Issue on the 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14) / Thermal Hydraulics | doi.org/10.13182/NT13-A15767
Articles are hosted by Taylor and Francis Online.
Boiling-induced natural-circulation flow in various engineered cooling channels is modeled and solved by considering the conservation of mass, momentum, and energy in the two-phase mixture, along with the two-phase friction drop and void fraction. The model is applied to estimate the induced mass flow rates through a uniform annular gap and a nonuniform annular gap between the reactor vessel and insulation under the in-vessel corium retention-external reactor vessel cooling conditions, and in the engineered corium cooling system of an ex-vessel core catcher during a severe accident. Dependence of the induced flow rate on various system parameters including the channel gap size, inlet diameter, inlet subcooling, and wall heat flux has been identified numerically. Results of the present study provide useful information for enhancing the design of engineered cooling channels to assure long-term cooling and retention of corium under severe accident conditions.