ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Haihua Zhao, Vincent A. Mousseau
Nuclear Technology | Volume 181 | Number 1 | January 2013 | Pages 184-195
Technical Paper | Special Issue on the 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14) / Thermal Hydraulics | doi.org/10.13182/NT13-A15766
Articles are hosted by Taylor and Francis Online.
This paper presents extended forward sensitivity analysis as a method to improve uncertainty quantification. By including the time step and potentially grid spacing as special sensitivity parameters, the forward sensitivity method is extended as one method to quantify numerical errors. Note that by integrating local truncation errors over the whole system through the forward sensitivity analysis process, the generated time step sensitivity information reflects global numerical errors. Discretization errors can be systematically compared against uncertainties due to other physical parameters. This extension makes the forward sensitivity method a much more powerful tool than other tools of its type to help uncertainty quantification. When the relative sensitivity of the time step to other physical parameters is known, the simulation is allowed to run at optimized time steps without affecting the confidence of the physical parameter sensitivity results. The time step forward sensitivity analysis method can also replace traditional time step convergence studies that are a key part of code verification, with much less computational cost. Two well-defined benchmark problems with manufactured solutions are utilized to demonstrate the method.