ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
D. Pun-Quach, P. Sermer, F. M. Hoppe, O. Nainer, B. Phan
Nuclear Technology | Volume 181 | Number 1 | January 2013 | Pages 170-183
Technical Paper | Special Issue on the 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14) / Reactor Safety | doi.org/10.13182/NT13-A15765
Articles are hosted by Taylor and Francis Online.
This paper presents a best estimate plus uncertainty (BEPU) methodology applied to dryout, or critical channel power (CCP), modeling based on a Monte Carlo approach. This method involves the identification of the sources of uncertainty and the development of error models for the characterization and separation of epistemic and aleatory uncertainties associated with the CCP parameter. Furthermore, the proposed method facilitates the use of actual operational data leading to improvements over traditional methods, such as sensitivity analysis, which assume parametric models that may not accurately capture the possible complex statistical structures in the system input and responses.