ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Michael J. Meholic, David L. Aumiller, Jr., Fan-Bill Cheung
Nuclear Technology | Volume 181 | Number 1 | January 2013 | Pages 106-114
Technical Paper | Special Issue on the 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14) / Thermal Hydraulics | doi.org/10.13182/NT12-10
Articles are hosted by Taylor and Francis Online.
A mechanistic droplet deposition model has been developed to quantify the direct-contact heat transfer present in dispersed flow film boiling. Lagrangian subscale trajectory calculations utilizing realistic velocity and temperature distributions in the momentum boundary layer are used to determine the number of dispersed droplets able to achieve contact with the heated wall. Coupling the droplet deposition model with a physical direct-contact heat transfer coefficient model allows the total direct-contact heat transfer to be determined based upon the local vapor mass flux, wall superheat, and vapor superheat. Comparisons to the existing models highlight the more mechanistic nature of the proposed model.