ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Chang H. Oh, Eung Soo Kim
Nuclear Technology | Volume 181 | Number 1 | January 2013 | Pages 68-80
Technical Paper | Special Issue on the 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14) / Thermal Hydraulics | doi.org/10.13182/NT13-A15757
Articles are hosted by Taylor and Francis Online.
Idaho National Laboratory has conducted air-ingress experiments as part of a campaign to validate computational fluid dynamics (CFD) calculations for very high-temperature gas-cooled reactor (VHTR) analysis. An isothermal test loop was designed to recreate exchange or stratified flow that occurs in the lower plenum of VHTR after a break in the primary loop allows helium to leak out and reactor building air to enter the reactor core. The experiment was designed to measure stratified flow in the inlet pipe connecting to the lower plenum of the General Atomics gas turbine-modular helium reactor (GT-MHR). Instead of helium and air, brine and sucrose were used as heavy fluids, and water was used as the lighter fluid to create, using scaling laws, the appropriate flow characteristics of the lower plenum immediately after depressurization. These results clearly indicate that stratified flow is established even for very small density differences.Corresponding CFD results were validated with the experimental data. A grid sensitivity study on CFD models was also performed using the Richardson extrapolation and the grid convergence index method for the numerical accuracy of CFD calculations. The calculated current speed showed very good agreement with the experimental data, indicating that current CFD methods are suitable for simulating density gradient stratified flow phenomena in an air-ingress accident.