ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
M. Corradini
Nuclear Technology | Volume 181 | Number 1 | January 2013 | Pages 2-10
Technical Paper | Special Issue on the 14th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-14) / Thermal Hydraulics | doi.org/10.13182/NT13-A15752
Articles are hosted by Taylor and Francis Online.
Nuclear power plants are currently operating throughout the world and are supplying more than one-sixth of the world's electricity. In spite of recent events in Japan, given the current rate of growth in electricity demand and the ever growing concerns for the environment, nuclear power remains a key technology that can help satisfy the need for electricity and other energy products if it can demonstrate (a) enhanced system reliability and safety, (b) minimal environmental impact via sustainable system designs, and (c) competitive economics. Since 2000, the United States in collaboration with the international community has begun research on the next generation of nuclear energy systems that can be made available to the market over the next couple of decades and may offer significant advances toward these challenging goals. For near-term deployment, advanced water-cooled thermal reactors are being ordered or are under construction. Beyond this next decade, there are future nuclear power systems [so-called Generation IV (Gen IV)] that require advances in materials, reactor physics, and heat transfer to realize their potential. In particular, the use of supercritical fluids in Gen IV nuclear systems has gained prominence. The focus of this paper is to summarize some of the key supercritical heat transfer topics that we are addressing to assure appropriate reliable design and operation of these advanced nuclear systems.