ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Peiwei Sun, Jin Jiang
Nuclear Technology | Volume 180 | Number 3 | December 2012 | Pages 399-421
Technical Paper | Special Issue on the Initial Release of MCNP6 / Thermal Hydraulics | doi.org/10.13182/NT12-A15352
Articles are hosted by Taylor and Francis Online.
In this paper, a dynamic model of the Canadian supercritical water-cooled reactor (SCWR) is developed to examine its dynamics for potential control system design and analysis. The model development is based on fundamental mass, energy, and momentum conservation equations of major components within the Canadian SCWR operating at supercritical condition. A full set of nonlinear dynamic equations is first derived, from which linearized models are obtained. The linearized models are validated against the full-order nonlinear models in both time domain and frequency domain. The open-loop dynamic characteristics of the Canadian SCWR are investigated through extensive simulations. Steady-state and dynamic couplings among different inputs and outputs are examined using relative gain array and Nyquist plots, and adequate input-output pairings are identified. Cross-coupling at different operating conditions is also evaluated to illustrate the nonlinear behaviors of the system. The developed dynamic model provides a necessary platform for systematic investigation in the control system design and analysis of the Canadian SCWR.