ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Peiwei Sun, Jin Jiang
Nuclear Technology | Volume 180 | Number 3 | December 2012 | Pages 399-421
Technical Paper | Special Issue on the Initial Release of MCNP6 / Thermal Hydraulics | doi.org/10.13182/NT12-A15352
Articles are hosted by Taylor and Francis Online.
In this paper, a dynamic model of the Canadian supercritical water-cooled reactor (SCWR) is developed to examine its dynamics for potential control system design and analysis. The model development is based on fundamental mass, energy, and momentum conservation equations of major components within the Canadian SCWR operating at supercritical condition. A full set of nonlinear dynamic equations is first derived, from which linearized models are obtained. The linearized models are validated against the full-order nonlinear models in both time domain and frequency domain. The open-loop dynamic characteristics of the Canadian SCWR are investigated through extensive simulations. Steady-state and dynamic couplings among different inputs and outputs are examined using relative gain array and Nyquist plots, and adequate input-output pairings are identified. Cross-coupling at different operating conditions is also evaluated to illustrate the nonlinear behaviors of the system. The developed dynamic model provides a necessary platform for systematic investigation in the control system design and analysis of the Canadian SCWR.