ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Ivan Gajev, Tomasz Kozlowski, Yunlin Xu, Thomas Downar
Nuclear Technology | Volume 180 | Number 3 | December 2012 | Pages 383-398
Technical Paper | Special Issue on the Initial Release of MCNP6 / Fission Reactors | doi.org/10.13182/NT12-A15351
Articles are hosted by Taylor and Francis Online.
Unstable behavior of boiling water reactors (BWRs) is known to occur during operation at certain power and flow conditions. This paper reports on an uncertainty study of the impact of various parameters on the prediction of the stability of the BWR within the framework of the Organisation for Economic Co-operation and Development Ringhals Unit 1 (Ringhals-1) Stability Benchmark. The time domain code TRACE/PARCS was used in the analysis. The paper is divided into two parts: a sensitivity study on numerical parameters (nodalization, time step, etc.) and an uncertainty analysis of the stability event. The sensitivity study was based on a space-time converged solution, and the most important neutronic and thermal-hydraulic parameters were identified for parameterization. The uncertainty calculation was then performed using the well-established propagation of input errors methodology. Finally, the Spearman Rank method was used to identify the most influential parameters affecting the stability of Ringhals-1.