ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
El Salvador: Looking to nuclear
In 2022, El Salvador’s leadership decided to expand its modest, mostly hydro- and geothermal-based electricity system, which is supported by expensive imported natural gas and diesel generation. They chose to use advanced nuclear reactors, preferably fueled by thorium-based fuels, to power their civilian efforts. The choice of thorium was made to inform the world that the reactor program was for civilian purposes only, and so they chose a fuel that was plentiful, easy to source and work with, and not a proliferation risk.
Justin K. Watson, Kostadin N. Ivanov
Nuclear Technology | Volume 180 | Number 2 | November 2012 | Pages 174-190
Technical Paper | Reactor Safety | doi.org/10.13182/NT12-A14632
Articles are hosted by Taylor and Francis Online.
Historically, large physics problems have been divided into smaller problems based on the individual physics, typically referred to as operator splitting. The analysis of a nuclear reactor for design-basis accidents is performed by a handful of computer codes each solving a portion of the problem, based on the physics involved. The reactor thermal-hydraulic response to an event is determined using a system code like TRAC RELAP Advanced Computational Engine (TRACE). The core power response to the same accident scenario is determined using a spatial neutron kinetics code like Purdue Advanced Reactor Core Simulator (PARCS). The drive of industry to uprate power for reactors has motivated analysts to move from a conservative approach to design-basis accidents toward a best-estimate method. To achieve a best-estimate calculation, efforts have been aimed at coupling the individual physics models to improve the accuracy of the analysis and reduce margins. The current coupling techniques are sequential in nature (i.e., they treat shared data explicitly in time). During a calculation time-step data are passed between the two codes. The individual codes solve their portions of the calculation and converge to a solution before the calculation is allowed to proceed to the next time step. This paper presents a fully implicit method of simultaneously solving the neutron balance equations, heat conduction equations, and constitutive fluid dynamics equations. The paper also outlines the basic concepts behind the nodal balance equations, heat transfer equations, and thermal-hydraulic equations, which will be coupled to form a fully implicit nonlinear system of equations. It presents a monolithic method for the solution of the implicit equation set. The coupling technique described in this paper was implemented into the TRACE/PARCS coupled code system and is applicable to other similar coupled thermal-hydraulic and core physics reactor safety codes. This technique is demonstrated using coupled input decks to show that the system is solved correctly and then verified by using simple one-dimensional coupled problems. These simplified problems demonstrate the ability of this method to solve nonlinear coupled systems and maintain accuracy while removing time-step dependency of the coupled calculation.