ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Yassin A. Hassan, Changwoo Kang
Nuclear Technology | Volume 180 | Number 2 | November 2012 | Pages 159-173
Technical Paper | Fission Reactors | doi.org/10.13182/NT12-A14631
Articles are hosted by Taylor and Francis Online.
Pressure drops over a packed bed of a pebble bed reactor were investigated. Measurements of porosity and pressure drop over the bed were carried out in a cylindrical packed-bed facility. Air and water were used for the working fluids. There are several parameters influencing the pressure drop in packed beds. One of the most important factors is the wall effect. The inhomogeneous porosity distribution in the bed and the additional wetted surface introduced by the wall cause variation of the pressure drop. The importance of wall effects and porosity can be explained by using different bed-to-particle-diameter ratios. Four different bed-to-particle-diameter ratios were used in these experiments (D/dp = 19, 9.5, 6.33, and 3.65). A comparison is made between the predictions by a number of empirical correlations including the Ergun equation (1952) and that of the Nuclear Safety Standards Commission (KTA) in the literature. Analysis of the data indicates the importance of the bed-to-particle-size ratio on the pressure drop. The comparison between the present and the existing correlations showed that the pressure drop of large bed-to-particle-diameter ratios (D/dp = 19, 9.5, and 6.33) matched very well with the original KTA correlation. However, the published correlations cannot be expected to predict accurate pressure drop for certain conditions, especially for pebble beds with D/dp 5. An improved correlation was obtained for a small bed-to-particle-diameter ratio by fitting the coefficients of that equation to experimental databases.