ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
November 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Industry Update—October 2025
Here is a recap of recent industry happenings:
New international partnership to speed Xe-100 SMR deployment
X-energy, Amazon, Korea Hydro & Nuclear Power, and Doosan Enerbility have formed a strategic partnership to accelerate the deployment of X-energy’s Xe-100 small modular reactors and TRISO fuel in the United States to meet the power demands from data centers and AI. The partners will collaborate in reactor engineering design, supply-chain development, construction planning, investment strategies, long-term operations, and global opportunities for joint AI-nuclear deployment. The companies also plan to jointly mobilize as much as $50 billion in public and private investment to support advanced nuclear energy in the U.S.
Jacobus J. Hancke, John C. Barry, Gerrit T. Van Rooyen, Johan P. R. De Villiers
Nuclear Technology | Volume 180 | Number 2 | November 2012 | Pages 149-158
Technical Paper | Fission Reactors | doi.org/10.13182/NT12-A14630
Articles are hosted by Taylor and Francis Online.
Coater parameters such as deposition temperature, volume percent of methyltrichlorosilane, and total gas flow were varied to study the effect on the ratio of defective TRISO nuclear fuel particles. The burn-leach test and other leach tests were performed to determine the defect ratio on samples of particles representing these variations. In the narrow ranges that were used, none of these parameters showed any correlation with the burn-leach result. However, a reduction in the density of the directly underlying carbon layer showed a marked increase in the defect ratio of particles. No trend could be observed when the density of the carbon layer was varied in the range of 1.8 to 2 g/cm3 , specified for TRISO particles. But, when the density was reduced to 1.7 and 1.6 g/cm3 , it was seldom possible to produce a batch that did not leach uranium, in spite of having a good quality SiC layer. This indicates that the integrity of the SiC layer is influenced by the quality of the underlying carbon layer. Mechanical damage is proposed as a mechanism responsible for the defective particles that are detected with the leach methods. This mechanism could be the reason for the variations in the leach results. Calculations and some examples show that all defects are not detected with the leach methods, probably because of the limited duration of these tests.