ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
MIT’s nuclear professional courses benefit United States—and now Australia too
Some 30 nuclear engineering departments at universities across the United States graduate more than 900 students every year. These young men and women are the present and future of the domestic nuclear industry as it seeks to develop and deploy advanced nuclear energy technologies, grow its footprint on the power grid, and penetrate new markets while continuing to run the existing fleet of reactors reliably and economically.
Adam Davis, Donald J. Dudziak
Nuclear Technology | Volume 180 | Number 1 | October 2012 | Pages 139-148
Technical Note | Materials for Nuclear Systems | doi.org/10.13182/NT12-A14525
Articles are hosted by Taylor and Francis Online.
Oil and natural gas companies use 241Am sources for well-logging applications (in the form of americium-beryllium neutron sources). Currently, the domestic supply of 241Am is depleted, and industry is now purchasing sources from Russia. The goal of the Americium Recovery Project (ARP) is to reprocess defense-waste plutonium to recover 241Am that would then be sold to oil and gas companies, providing a safe, secure domestic source for industrial applications. Because the primary radiological concern with an 241Am source is external photon exposure, the radiological workers involved in the ARP will perform operations in glove boxes featuring lead-lined gloves. Given the U.S. mandate for the reduction of lead in industrial settings and the costs associated with the disposal of leaded gloves as mixed waste, alternatives are being considered to the traditional lead-lined gloves used in glove boxes. Several composite materials were previously developed and analyzed for incident photons of energies below 400 keV using the Lambert-Beer law to calculate transmission fractions. This research extends the energy range to 10 MeV and uses a source term of interest to the ARP. Further, the Monte Carlo transport code MCNP5 is used to calculate source-normalized doses using two common response functions: H'(0.07) and H*(10). The results and calculations presented in this research are more detailed than previous calculations and present further rationale for the context-specific selection of a given material.