ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
TerraPower begins U.K. regulatory approval process
Seattle-based TerraPower signaled its interest this week in building its Natrium small modular reactor in the United Kingdom, the company announced.
TerraPower sent a letter to the U.K.’s Department for Energy Security and Net Zero, formally establishing its intention to enter the U.K. generic design assessment (GDA) process. This is TerraPower’s first step in deployment of its Natrium technology—a 345-MW sodium fast reactor coupled with a molten salt energy storage unit—on the international stage.
M. J. Driscoll, R. K. Lester, K. G. Jensen, B. W. Arnold, P. N. Swift, P. V. Brady
Nuclear Technology | Volume 180 | Number 1 | October 2012 | Pages 111-121
Technical Paper | Radioactive Waste Management and Disposal | doi.org/10.13182/NT12-A14523
Articles are hosted by Taylor and Francis Online.
The use of deep boreholes for the disposal of high-level radioactive waste is reassessed, emphasizing key enabling technical features and their strong linkage to national and international fuel cycle policy. Emplacement 2 to 4 km deep in widely available granitic continental bedrock, under a 1-km caprock layer of high-integrity bedrock, is shown in this analysis to have the potential to provide sufficiently low host rock permeability to prevent radionuclide escape by transport in water - the only plausible release mechanism. The modular nature of the concept enables multiregion siting in large user countries and is especially well-suited for small-user nations. Irretrievability can be built-in to better meet safeguards objectives, and the exceptionally high assurance of confinement makes the disposal of minor actinides (and troublesome fission products) an attractive alternative to their destruction by transmutation.