ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
The RAIN scale: A good intention that falls short
Radiation protection specialists agree that clear communication of radiation risks remains a vexing challenge that cannot be solved solely by finding new ways to convey technical information.
Earlier this year, an article in Nuclear News described a new radiation risk communication tool, known as the Radiation Index, or, RAIN (“Let it RAIN: A new approach to radiation communication,” NN, Jan. 2025, p. 36). The authors of the article created the RAIN scale to improve radiation risk communication to the general public who are not well-versed in important aspects of radiation exposures, including radiation dose quantities, units, and values; associated health consequences; and the benefits derived from radiation exposures.
Hesham R. Nasif, Fukuzo Masuda, Hidetsugu Morota, Hitomasa Iida, Satoshi Sato, Chikara Konno
Nuclear Technology | Volume 180 | Number 1 | October 2012 | Pages 89-102
Technical Paper | Radiation Protection | doi.org/10.13182/NT12-A14521
Articles are hosted by Taylor and Francis Online.
GEOMIT is a computer-aided design (CAD)/MCNP conversion interface code. It was developed to automatically generate Monte Carlo geometrical data from CAD data due to the difference in the representation scheme. GEOMIT is capable of importing as well as exporting different CAD formats. GEOMIT has the capability to produce solid cells as well as void cells without using the complement operator. While loading the CAD shapes (solids), each shape is assigned a material number and density according to its color on the original CAD data. A shape fixing process has been applied to cure the errors in the CAD data. Vertex location correctness is evaluated first, and then a removal of free edges and removal of small faces processes. A binary space portioning tree technique is used to automatically split complicated solids into simpler cells to avoid excessively complicated cells to allow MCNP to run faster. MCNP surfaces are subjected to an automatic reduction before creating the model. CAD data of the ITER benchmark model have been converted successfully to MCNP geometrical input. MCNP input model validations have been carried out by checking lost particles and comparing volumes calculated by MCNP to those of the original CAD data. Different test cases have been evaluated for ITER, including blanket first wall heat loading calculations, surface fluxes, and volume fluxes at different divertor regions as well as toroidal field coil heating.