ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2024 ANS Winter Conference and Expo
November 17–21, 2024
Orlando, FL|Renaissance Orlando at SeaWorld
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Siting of Canadian repository gets support of tribal nation
Canada’s Nuclear Waste Management Organization (NWMO) announced that Wabigoon Lake Ojibway Nation has indicated its willingness to support moving forward to the next phase of the site selection process to host a deep geological repository for Canada’s spent nuclear fuel.
Hesham R. Nasif, Fukuzo Masuda, Hidetsugu Morota, Hitomasa Iida, Satoshi Sato, Chikara Konno
Nuclear Technology | Volume 180 | Number 1 | October 2012 | Pages 89-102
Technical Paper | Radiation Protection | doi.org/10.13182/NT12-A14521
Articles are hosted by Taylor and Francis Online.
GEOMIT is a computer-aided design (CAD)/MCNP conversion interface code. It was developed to automatically generate Monte Carlo geometrical data from CAD data due to the difference in the representation scheme. GEOMIT is capable of importing as well as exporting different CAD formats. GEOMIT has the capability to produce solid cells as well as void cells without using the complement operator. While loading the CAD shapes (solids), each shape is assigned a material number and density according to its color on the original CAD data. A shape fixing process has been applied to cure the errors in the CAD data. Vertex location correctness is evaluated first, and then a removal of free edges and removal of small faces processes. A binary space portioning tree technique is used to automatically split complicated solids into simpler cells to avoid excessively complicated cells to allow MCNP to run faster. MCNP surfaces are subjected to an automatic reduction before creating the model. CAD data of the ITER benchmark model have been converted successfully to MCNP geometrical input. MCNP input model validations have been carried out by checking lost particles and comparing volumes calculated by MCNP to those of the original CAD data. Different test cases have been evaluated for ITER, including blanket first wall heat loading calculations, surface fluxes, and volume fluxes at different divertor regions as well as toroidal field coil heating.