ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
February 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Feinstein Institutes to research novel radiation countermeasure
The Feinstein Institutes for Medical Research, home of the research institutes of New York’s Northwell Health, announced it has received a five-year, $2.9 million grant from the National Institutes of Health to investigate the potential of human ghrelin, a naturally occurring hormone, as a medical countermeasure against radiation-induced gastrointestinal syndrome (GI-ARS).
Masatoshi Yamasaki, Hironobu Unesaki, Akio Yamamoto, Toshikazu Takeda, Masaaki Mori
Nuclear Technology | Volume 180 | Number 1 | October 2012 | Pages 18-27
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT12-A14516
Articles are hosted by Taylor and Francis Online.
The use of highly-enriched fuels is an effective method for reducing the number of spent fuel assemblies and improving fuel cycle economics, e.g., with >5 wt% 235U. However, from a criticality safety point of view, such high enrichment levels require a significant investment for the considerable modification of most facilities and equipment. Erbia-credit super-high-burnup fuel offers an effective solution that can solve the problem: Small amounts of erbia added to the entire amount of UO2 powder can reduce the reactivity level to less than that observed at a 5 wt% enrichment level, thus eliminating the need for the modifications mentioned above. A series of criticality safety analyses has been performed to determine the minimum and sufficient content of erbia that can guarantee a suitable erbia credit. As a noteworthy result, the erbia content required was determined for corresponding values of uranium enrichment in a range >5 wt%, as indicated in our ECOS (Erbia COntent for Sub-criticality judgment) diagram. This paper outlines a series of criticality safety analyses and explains how the minimum erbia content can be determined to ensure subcriticality for a >5 wt% enrichment fuel to ensure that the fuel obtained is equivalent to that whose enrichment is <5 wt%.