ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Masatoshi Yamasaki, Hironobu Unesaki, Akio Yamamoto, Toshikazu Takeda, Masaaki Mori
Nuclear Technology | Volume 180 | Number 1 | October 2012 | Pages 18-27
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT12-A14516
Articles are hosted by Taylor and Francis Online.
The use of highly-enriched fuels is an effective method for reducing the number of spent fuel assemblies and improving fuel cycle economics, e.g., with >5 wt% 235U. However, from a criticality safety point of view, such high enrichment levels require a significant investment for the considerable modification of most facilities and equipment. Erbia-credit super-high-burnup fuel offers an effective solution that can solve the problem: Small amounts of erbia added to the entire amount of UO2 powder can reduce the reactivity level to less than that observed at a 5 wt% enrichment level, thus eliminating the need for the modifications mentioned above. A series of criticality safety analyses has been performed to determine the minimum and sufficient content of erbia that can guarantee a suitable erbia credit. As a noteworthy result, the erbia content required was determined for corresponding values of uranium enrichment in a range >5 wt%, as indicated in our ECOS (Erbia COntent for Sub-criticality judgment) diagram. This paper outlines a series of criticality safety analyses and explains how the minimum erbia content can be determined to ensure subcriticality for a >5 wt% enrichment fuel to ensure that the fuel obtained is equivalent to that whose enrichment is <5 wt%.