ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Masatoshi Yamasaki, Hironobu Unesaki, Akio Yamamoto, Toshikazu Takeda, Masaaki Mori
Nuclear Technology | Volume 180 | Number 1 | October 2012 | Pages 18-27
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT12-A14516
Articles are hosted by Taylor and Francis Online.
The use of highly-enriched fuels is an effective method for reducing the number of spent fuel assemblies and improving fuel cycle economics, e.g., with >5 wt% 235U. However, from a criticality safety point of view, such high enrichment levels require a significant investment for the considerable modification of most facilities and equipment. Erbia-credit super-high-burnup fuel offers an effective solution that can solve the problem: Small amounts of erbia added to the entire amount of UO2 powder can reduce the reactivity level to less than that observed at a 5 wt% enrichment level, thus eliminating the need for the modifications mentioned above. A series of criticality safety analyses has been performed to determine the minimum and sufficient content of erbia that can guarantee a suitable erbia credit. As a noteworthy result, the erbia content required was determined for corresponding values of uranium enrichment in a range >5 wt%, as indicated in our ECOS (Erbia COntent for Sub-criticality judgment) diagram. This paper outlines a series of criticality safety analyses and explains how the minimum erbia content can be determined to ensure subcriticality for a >5 wt% enrichment fuel to ensure that the fuel obtained is equivalent to that whose enrichment is <5 wt%.