ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
James J. Dahl, Shivi Singh, Marvin G. Zimmerman
Nuclear Technology | Volume 180 | Number 1 | October 2012 | Pages 1-17
Technical Paper | Fission Reactors | doi.org/10.13182/NT12-A14515
Articles are hosted by Taylor and Francis Online.
This paper investigates the potential impacts of the transition to the U.S. Department of Energy (DOE) Order 420.1B requirements and the criteria promulgated by the new DOE-STD-1189 on the current practice for seismic design of structures, systems, and components (SSCs). Addressed in the review is the modification of the prescribed methodology provided in ANSI/ANS-2.6-2004 by the new DOE standard. The new ANSI/ANS standards provide criteria and guidance in selecting the seismic design category (SDC) and the limit state (LS) for the SSCs that are important to safety. An unmitigated consequence analysis considering the uncertainties in estimating failure and the safety consequences of the failure may be performed to determine the SDC and the LS, which then are used to establish the level of peak ground acceleration and design response spectra. The new DOE-STD-1189 modifies the prescribed methodology provided in ANSI/ANS-2.6-2004 for calculation of unmitigated radiological dose consequence. Unmitigated consequence analysis is a procedure that has been used by the DOE for the purpose of incorporating safety in the design and operation of its nuclear facilities and is also used in 10 CFR 70, the U.S. Nuclear Regulatory Commission regulation applicable to fuel cycle facilities, and the associated Standard Review Plan (NUREG-1520). This paper identifies the iterative DOE double-pronged approach to seismic design, and a simplified example demonstrates the unmitigated seismic hazard consequence analysis.