ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Bong Goo Kim, Joy L. Rempe, Darrell L. Knudson, Keith G. Condie, Bulent H. Sencer
Nuclear Technology | Volume 179 | Number 3 | September 2012 | Pages 417-428
Technical Paper | Materials for Nuclear Systems | doi.org/10.13182/NT12-A14173
Articles are hosted by Taylor and Francis Online.
An instrumented creep testing capability is being developed for specimens irradiated in pressurized water reactor coolant conditions at the Advanced Test Reactor (ATR). A test rig has been developed such that samples will be subjected to stresses up to 350 MPa at temperatures up to 370°C in pile. Initial Idaho National Laboratory (INL) efforts to develop this creep testing capability for the ATR are summarized. In addition to providing an overview of in-pile creep test capabilities available at other test reactors, this paper reports efforts by the INL to evaluate a prototype test rig in an autoclave at INL's High Temperature Test Laboratory. Data from autoclave tests with Type 304 stainless steel and copper specimens are reported.