ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Deep Space: The new frontier of radiation controls
In commercial nuclear power, there has always been a deliberate tension between the regulator and the utility owner. The regulator fundamentally exists to protect the worker, and the utility, to make a profit. It is a win-win balance.
From the U.S. nuclear industry has emerged a brilliantly successful occupational nuclear safety record—largely the result of an ALARA (as low as reasonably achievable) process that has driven exposure rates down to what only a decade ago would have been considered unthinkable. In the U.S. nuclear industry, the system has accomplished an excellent, nearly seamless process that succeeds to the benefit of both employee and utility owner.
P. Deepika, K. N. Sabharwal, T. G. Srinivasan, P. R. Vasudeva Rao
Nuclear Technology | Volume 179 | Number 3 | September 2012 | Pages 407-416
Technical Paper | Reprocessing | doi.org/10.13182/NT12-A14172
Articles are hosted by Taylor and Francis Online.
2,6-bis(5,6-dipropyl-1,2,4-triazin-3-yl)pyridine (n-Pr-BTP) was impregnated on XAD-7 resin and the extraction performance of this n-Pr-BTP/XAD-7 resin was investigated for the uptake of Am(III) from acidic nitrate solutions. The uptake behavior of the lanthanides, La(III), Ce(III), Nd(III), Eu(III), and Gd(III), as well as elements such as Ba(II), Fe(III), Mo(VI), Ru(III), Zr(IV), Cs(I), and Sr(II) was also studied in batch experiments. It was found that the resin exhibited significantly high extraction and selectivity for Am(III) over the lanthanides and other elements. Based on the results obtained from batch studies, the separation behavior of Am(III) from Eu(III) was examined by extraction chromatography using a column packed with the n-Pr-BTP/XAD-7 resin. A complete separation between Am(III) and Eu(III) was achieved from aqueous phase containing nitric acid and ammonium nitrate in the column experiment. Based on this result, experiments were performed to investigate the separation of Am(III) from the lanthanides from octyl(phenyl)-N,N-diisobutylcarbamoylmethyl phosphine oxide (CMPO)-treated high-level waste.