ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
S. Chatzidakis, A. Ikonomopoulos, M. Alamaniotis
Nuclear Technology | Volume 179 | Number 3 | September 2012 | Pages 392-406
Technical Paper | Thermal Hydraulics | doi.org/10.13182/NT12-A14171
Articles are hosted by Taylor and Francis Online.
A systematic approach for performing a holistic reactivity insertion analysis in research reactors using the RELAP5/MOD3 code is proposed. The intention is to demonstrate, in an orderly manner, a method for determining the limiting reactivity insertion in a research reactor facility. Indispensable constituents of the algorithmic approach are the introduction of the "time-to-failure" parameter, the selection of the reactivity insertion duration, the evaluation of the control rod drop time, and the computation of engineering factors. The methodology is demonstrated through a RELAP5/MOD3 parametric study performed to determine the limiting reactivity insertion values for the Greek Research Reactor-1 (GRR-1). In the framework of this study, the core nodalization effect on reactivity limits and the degree of conservatism introduced by the engineering factors are discussed. The results obtained confirm the applicability of the approach and reveal the effect of the parameters mentioned above on the performance of reactivity insertion analysis.