ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Steven E. Skutnik, Man-Sung Yim
Nuclear Technology | Volume 179 | Number 3 | September 2012 | Pages 374-381
Technical Paper | Fuel Cycle and Management | doi.org/10.13182/NT12-A14169
Articles are hosted by Taylor and Francis Online.
The effect of simplifications in nuclear fuel depletion analysis as well as the effect of cross-section uncertainties were evaluated as to their impact upon material attractiveness for weapons diversion purposes. The effect of simplified depletion models for material attractiveness evaluation was evaluated through a comparison of pressurized water reactor fuel for several benchmark cases, using experimentally measured values along with a two-dimensional lattice physics model (TRITON) and a point depletion model (ORIGEN-S). Simplifications such as the use of the ORIGEN-S depletion libraries and assumptions of homogeneous core enrichment were found to have a negligible impact on material attractiveness evaluation, particularly relative to uncertainties in experimental measurements; additionally, simplified irradiation power histories do not introduce unacceptable errors into the attractiveness evaluation. Finally, the overall sensitivity of material attractiveness and associated uncertainty was found to be greater for transuranic mixtures compared to plutonium as a function of both burnup and decay time; however, associated uncertainties are generally small and not prohibitive to material attractiveness discrimination. As a result, the use of simplified depletion models such as ORIGEN-S appears to be well justified for use in material attractiveness evaluation for proliferation resistance studies.