ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Akifumi Yamaji, Yoshihiro Nakano, Sadao Uchikawa, Tsutomu Okubo
Nuclear Technology | Volume 179 | Number 3 | September 2012 | Pages 309-322
Technical Paper | Fission Reactors/Fuel Cycle and Management | doi.org/10.13182/NT12-A14165
Articles are hosted by Taylor and Francis Online.
The innovative water reactor for flexible fuel cycle (FLWR) is an advanced reactor concept based on the well-developed light water reactor (LWR) technology. It is to be introduced in two stages to achieve effective and flexible utilization of the uranium and plutonium resources. In the first stage, the high-conversion-type reactor concept (HC-FLWR) is to be introduced, with a core that achieves a fissile Pu conversion ratio of 0.84. Then, in the second stage, the reduced-moderation water reactor (RMWR) concept can be introduced, with a breeder-type core that achieves a fissile Pu conversion ratio of 1.05. From the viewpoint of effective introduction of the high-conversion-type reactor, such as the introduction capacity of the reactor, HC-FLWR is required to further raise the fissile Pu conversion ratio to [approximately]0.95.This study aims to develop a new core design concept for the high-conversion-type core, HC-FLWR+ , to achieve the higher fissile Pu conversion ratio of [approximately]0.95 under the framework of UO2 and U-Pu mixed-oxide (MOX) fuel technologies for LWRs. For raising the fissile Pu conversion ratio and controlling the void reactivity characteristics of the core, the concept of FLWR/MIX fuel assembly, which uses MOX and enriched UO2 fuel rods, is utilized.The relationships between the main design parameters and the core performance index parameters are clarified in this study. When the fuel rod diameter and the clearance range from 1.23 to 1.28 cm and 0.25 to 0.20 cm, respectively, under the same pitch of 1.48 cm, the fissile Pu conversion ratio and the core average discharge burnup range from 0.89 to 0.94 and 53 to 49 GWd/tonne, respectively (the fissile Pu conversion ratio and the burnup are subject to a trade-off). Furthermore, when 235U enrichment in the UO2 fuel rods is increased from 4.9 to 6 wt%, the fissile Pu conversion ratio improves to 0.97.From these relationships, two representative core designs with fissile Pu conversion ratios of 0.91 and 0.94 and one optional design with a ratio of 0.97 were obtained. Hence, the flexibility of HC-FLWR+ concept to achieve a higher fissile Pu conversion ratio of [approximately]0.95 has been revealed. Together with the standard HC-FLWR design, the concept covers a wide range of needs on fissile Pu conversion ratio from 0.84 up to 0.97, with design variations that are expected to be within the scope of current boiling water reactor and MOX fuel technologies.