ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Kyuhak Oh, Mark A. Prelas, Jason B. Rothenberger, Eric D. Lukosi, Jeho Jeong, Daniel E. Montenegro, Robert J. Schott, Charles L. Weaver, Denis A. Wisniewski
Nuclear Technology | Volume 179 | Number 2 | August 2012 | Pages 234-242
Technical Paper | Radioisotopes | doi.org/10.13182/NT12-A14095
Articles are hosted by Taylor and Francis Online.
Monte Carlo simulations have been used for calculating the energy deposition of beta particles in the depletion region of a silicon carbide (SiC) betavoltaic cell along with the corresponding theoretical efficiencies. Three Monte Carlo codes were used in the study: GEANT4, PENELOPE, and MCNPX. These codes were used to examine the transportation of beta particles from 90Y, 90Sr, and 35S. Both the average beta energy from each source and the entire spectrum were modeled for calculating maximum theoretical energy deposition in both a spherical and slab geometry. A simulated depletion region was added in postprocessing containing the maximum energy deposited per micrometer. The calculated maximum efficiencies with the slab configuration model are approximately 1.95%, 0.30%, and 0.025% using monoenergetic average energy and 1.54%, 0.25%, and 0.019% using an energy spectrum for 35S, 90Sr, and 90Y, respectively. These efficiencies when using the spherical configuration model are 2.02%, 0.31%, and 0.023% using the monoenergetic average energy and 1.10%, 0.17%, and 0.013% using an energy spectrum for 35S, 90Sr, and 90Y, respectively.