ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Yoshiharu Sakamura, Masaaki Akagi
Nuclear Technology | Volume 179 | Number 2 | August 2012 | Pages 220-233
Technical Paper | Reprocessing | doi.org/10.13182/NT179-220
Articles are hosted by Taylor and Francis Online.
A series of pyrochemical reprocessing tests involving pretreatment, electrolytic reduction, and electrorefining processes were conducted using [approximately]100 g of simulated spent oxide fuel. In the pretreatment process, a simulated spent oxide fuel consisting of dense UO2 pellets containing typical fission product elements (strontium, cerium, neodymium, samarium, zirconium, palladium, and molybdenum) was powderized by voloxidation, which corresponds to fuel decladding. Porous oxide pellets were then fabricated from the obtained oxide powder. In the electrolytic reduction process, [approximately]100 g of the porous oxide pellets was loaded in a cathode basket and electrolytic reduction was performed for 7.6 h in a LiCl-Li2O salt at 650°C. The UO2 was reduced to metallic uranium with a reduction yield of 99.2% and a current efficiency of 74%. All the strontium dissolved into the salt. It was verified that the preparation of porous oxide pellets was highly advantageous in improving the rate of oxide reduction. In the subsequent electrorefining process, the reduction product was loaded in an anode basket and electrorefining was performed for 5.8 h in a LiCl-KCl-UCl3 salt at 500°C. Most of the uranium in the reduction product was anodically dissolved in the salt and the refined uranium metal was collected on a stainless steel cathode. Most of the rare earth elements were dissolved in the salt, whereas zirconium, palladium, and molybdenum remained in the anode residue. The concentration of UCl3 in the salt slightly decreased during electrorefining, since U3+ reacted with the oxides contained in the reduction product to form a uranium oxide precipitate.