ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
D. Guzonas, F. Brosseau, P. Tremaine, J. Meesungnoen, J.-P. Jay-Gerin
Nuclear Technology | Volume 179 | Number 2 | August 2012 | Pages 205-219
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT12-A14093
Articles are hosted by Taylor and Francis Online.
The long-term viability of a supercritical water-cooled reactor (SCWR) will depend on the ability of designers and operators to control and maintain water chemistry conditions that will minimize corrosion and the transport of both corrosion products and radionuclides, at a pressure of 25 MPa and temperatures from 300°C to 625°C. To achieve this goal, the behavior of low concentrations of impurities such as transition metal corrosion products, chemistry control agents, impurities in the feedwater, and radionuclides (fission and activation products) in subcritical and supercritical water must be understood. A second key aspect of SCWR water chemistry control will be mitigation of the effects of water radiolysis. Preliminary studies suggest markedly different behavior than that predicted by extrapolating conventional water-cooled reactor behavior. The principal challenge in predicting corrosion and fission product transport is the lack of thermochemical and kinetic data above 300°C. Calculations with extrapolated data show that the formation of neutral complexes increases with temperature and can become important under near-critical and supercritical conditions. The most important region is from 300°C to 450°C, where the properties of water change dramatically and solvent compressibility effects exert a huge influence on solvation. The potential for increased transport and deposition of corrosion products (radioactive and inactive), leading to increased deposition on fuel cladding surfaces and increased out-of-core radiation fields and worker dose, must be assessed. The commonly used strategy of adding excess hydrogen at concentrations sufficient to suppress the net radiolytic production of primary oxidizing species may not be effective in an SCWR. Because direct measurement of the chemistry under such extreme conditions of temperature, pressure, and radiation fields is difficult, the most promising approach involves a combination of theoretical calculations, chemical models, and experimental work.