ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
D. Guzonas, F. Brosseau, P. Tremaine, J. Meesungnoen, J.-P. Jay-Gerin
Nuclear Technology | Volume 179 | Number 2 | August 2012 | Pages 205-219
Technical Paper | Nuclear Plant Operations and Control | doi.org/10.13182/NT12-A14093
Articles are hosted by Taylor and Francis Online.
The long-term viability of a supercritical water-cooled reactor (SCWR) will depend on the ability of designers and operators to control and maintain water chemistry conditions that will minimize corrosion and the transport of both corrosion products and radionuclides, at a pressure of 25 MPa and temperatures from 300°C to 625°C. To achieve this goal, the behavior of low concentrations of impurities such as transition metal corrosion products, chemistry control agents, impurities in the feedwater, and radionuclides (fission and activation products) in subcritical and supercritical water must be understood. A second key aspect of SCWR water chemistry control will be mitigation of the effects of water radiolysis. Preliminary studies suggest markedly different behavior than that predicted by extrapolating conventional water-cooled reactor behavior. The principal challenge in predicting corrosion and fission product transport is the lack of thermochemical and kinetic data above 300°C. Calculations with extrapolated data show that the formation of neutral complexes increases with temperature and can become important under near-critical and supercritical conditions. The most important region is from 300°C to 450°C, where the properties of water change dramatically and solvent compressibility effects exert a huge influence on solvation. The potential for increased transport and deposition of corrosion products (radioactive and inactive), leading to increased deposition on fuel cladding surfaces and increased out-of-core radiation fields and worker dose, must be assessed. The commonly used strategy of adding excess hydrogen at concentrations sufficient to suppress the net radiolytic production of primary oxidizing species may not be effective in an SCWR. Because direct measurement of the chemistry under such extreme conditions of temperature, pressure, and radiation fields is difficult, the most promising approach involves a combination of theoretical calculations, chemical models, and experimental work.