ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Alan H. Wells, Albert J. Machiels
Nuclear Technology | Volume 179 | Number 2 | August 2012 | Pages 180-188
Technical Paper | Reactor Safety | doi.org/10.13182/NT12-A14090
Articles are hosted by Taylor and Francis Online.
Spent nuclear fuel transported in large casks must remain subcritical in all credible configurations for normal operation and hypothetical accident conditions. The effects on spent nuclear fuel reactivity from "worst-case" accident scenarios were surveyed in NUREG/CR-6835, "Effects of Fuel Failure on Criticality Safety and Radiation Dose for Spent Fuel Casks." The survey used scenarios that were postulated to provide theoretical upper limits for reactivity effects of fuel relocation, although they were described as going "beyond credible conditions." These scenarios involved physical changes either to fuel assembly rod arrays or to collections of fuel pellets with the fuel skeleton removed. To provide more credible estimates of the probability and maximum reactivity changes, a process is presented that deconstructs each scenario into a set of subscenarios and identifies the physical phenomena required to create the subscenario. The boundary between credible but unlikely scenarios and incredible scenarios is more easily discernible with this process.For marginally credible worst-case scenarios, it is concluded that the maximum reasonable reactivity increase either is less than the mandated administrative nuclear criticality safety margin for scenarios involving physical changes to fuel assembly rod arrays or is a substantial reactivity decrease for scenarios involving collections of fuel pellets. A cask designer could apply scenario deconstruction to evaluate the physical limits that apply to a particular transportation cask, and perform calculations specific to a particular cask design to show that criticality safety requirements are met.