ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Chris Kennedy, Cristian Rabiti, Hany Abdel-Khalik
Nuclear Technology | Volume 179 | Number 2 | August 2012 | Pages 169-179
Technical Paper | Fission Reactors | doi.org/10.13182/NT179-169
Articles are hosted by Taylor and Francis Online.
Generalized perturbation theory (GPT) has been recognized as the most computationally efficient approach for performing sensitivity analysis for models with many input parameters, which renders forward sensitivity analysis computationally overwhelming. In critical systems, GPT involves the solution of the adjoint form of the eigenvalue problem with a response-dependent fixed source. Although conceptually simple to implement, most neutronics codes that can solve the adjoint eigenvalue problem do not have a GPT capability unless envisioned during code development. We introduce in this manuscript a reduced-order modeling approach based on subspace methods that requires the solution of the fundamental adjoint equations but allows the generation of response sensitivities without the need to set up GPT equations, and that provides an estimate of the error resulting from the reduction. Moreover, the new approach solves the eigenvalue problem independently of the number or type of responses. This allows for an efficient computation of sensitivities when many responses are required. This paper introduces the theory and implementation details of the GPT-free approach and describes how the errors could be estimated as part of the analysis. The applicability is demonstrated by estimating the variations in the flux distribution everywhere in the phase space of a fast critical sphere and a high-temperature gas-cooled reactor prismatic lattice. The variations generated by the GPT-free approach are benchmarked to the exact variations generated by direct forward perturbations.